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1 Introduction

Grand unified theories (GUTs) provide a beautiful field theoretic proposal for physics be-

yond the weak scale. It is thus natural to investigate whether one can embed supersymmet-

ric GUTs into string theory. This has been a challenging question throughout the history

of string theory. It was noticed as early as in the mid eighties that the ten-dimensional

perturbative E8 ×E8 heterotic string naturally incorporates GUT gauge groups like SU(5)

and SO(10) upon compactification to four flat dimensions together with the desired mat-

ter particle content and (Yukawa) couplings. Finding a completely realistic string model,

though, turned out to be not that straightforward, despite tremendous progress over the

years, as summarized e.g. in [1]. On the other hand, for the heterotic string there is no nat-

ural origin for the small hierarchy MX/Mpl ≃ 10−3 and one has to invoke large threshold

corrections or anisotropic backgrounds for its explanation.

Alternatively to the heterotic string, since the mid nineties D-brane models of various

kinds have been discussed as candidate stringy realizations of the MSSM. These construc-

tions go under the name of orientifold models, see e.g. [2–4] for more recent reviews. In

this construction it was observed [5] that SO(10) and SU(5) GUTs were obstructed by the

perturbative absence of matter fields in the 16 representation of SO(10) and by the absence

of the top Yukawa coupling 1010 5H for the SU(5) case.
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More recently it has been realized that the aforementioned problems with realizing

simple GUT groups in orientifold constructions are nicely reconciled in F-theory models

on elliptically-fibered Calabi-Yau fourfolds [6–9].

Due to the strong backreaction, only in a global gs → 0 limit a general F-theory model

is expected to correspond to a Type IIB Calabi-Yau orientifold with D-branes. More

generally, F-theory inherently captures features which are non-perturbative in gs. These

allow for the possibility of non-perturbative gauge enhancements and the appearance of

exceptional groups E6, E7, E8 in F-theory. By a further unfolding of these exceptional

groups it is also possible to realize the spinor representation of a GUT SO(10) as well as

the top-quark Yukawa couplings 1010 5H in GUT SU(5). For four-dimensional models,

the basis B is a threefold and the 7-branes wrap complex surfaces.

To suppress gravity (bulk) induced effects on the brane physics, it was proposed in [8]

that a decoupling limit of gravity should in principle exist. This implies that the GUT

physics should be localized on a 7-brane wrapping a shrinkable four-cycle in the base of

the elliptically-fibered Calabi-Yau fourfold. Such shrinkable surfaces are given by del Pezzo

surfaces dPn, which are P
2 blown-up at n = 0, . . . , 8 different points and P

1 × P
1. It was

further proposed to break the GUT symmetry to the Standard Model by means of a non-

vanishing U(1)Y gauge flux [8, 9]. For the hypercharge to remain massless, this flux must

be supported on two-cycles in the del Pezzo surface which are trivial as two-cycles in the

base [10]. Therefore, the existence of del Pezzo surfaces with such ’trivial’ two-cycles is the

starting point for a concrete implementation of these ideas in compact Calabi-Yau fourfolds.

Of course, the realization of three generations, realistic Yukawa textures, suppressed proton

decay and a solution to the doublet-triplet splitting problem imposes more conditions on the

fourfold geometry and the four-form fluxes on them. Recent studies of these and further

phenomenological questions and of the associated model building prescriptions in local

constructions include [11–26]. Progress towards compact models has been made in [27–29].

As an intermediate step, in [30] it was analyzed to what degree all these geometric

conditions can be met already in Type IIB orientifolds. Clearly, such perturbative models

face the problem of generating all genuine E8 structures at best non-perturbatively, such

as the 1010 5H Yukawa coupling [31]. Nevertheless they provide a good starting point

in several respects: The stringy consistency conditions such as flux quantization, tadpole

cancellation, D-term supersymmetry conditions must all show up in an analogous way in

F-theory. For instance, the GUT symmetry breaking via U(1)Y flux on del Pezzo surfaces

also works in orientifold models [16, 30]. Second, the orientifolded Calabi-Yau threefold

geometries might lead to interesting fourfold geometries once one understands their uplift.

Such an approach was initiated in [32], where it was analyzed how simple orientifolds give

rise to Calabi-Yau fourfolds.

It is the aim of this paper to analyze this uplifting further and generalize it in particular

to the orientifolds of [30], which are guaranteed to contain del Pezzo surfaces with trivial

two-cycles. This goes beyond the analysis of [32], as the orientifolds of major interest have

either O7-planes with more than one components or are defined via exchange involutions.

In the first case, the del Pezzo is one component of the orientifold locus and in the second

case the del Pezzo is exchanged with a mirror del Pezzo. We will discuss one example of

each kind in detail and list the results of the uplift for many more examples in an appendix.
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The idea is to first understand how these geometries lift to elliptically fibered Calabi-

Yau fourfolds. Clearly, in the Sen limit [33] these fourfolds must reproduce the location

of the former orientifold planes. We will see that these uplifts generically have singular-

ities, i.e. they are Weierstrass fibrations over non-Fano threefolds. The presence of these

singularities is linked to the existence of a minimal non-Abelian gauge symmetry in the

orientifold model. The latter is essentially a consequence of having branes on del Pezzo

divisors which cannot be deformed.

As we will explicitly verify, the uplifted fourfolds have complex structure moduli which

do not have an orientifold analogue and therefore allow for more general degenerations of

the elliptic fiber. In particular, we are interested in realizing the E8 structures on these

fourfolds. We will show at two concrete prototype examples that indeed, even though

the starting point was an orientifold model, the fourfold allows for E8-type degeneration.

However, it turns out that there are still some restrictions on the GUT structures.

2 Preliminaries on type IIB orientifolds

In this section we collect some aspects of Type IIB Calabi-Yau orientifold compactifications

with space-time filling D7-branes which are relevant for our discussion. More details can be

found e.g. in [30]. We consider an orientifold projection which allows for O3 and O7-planes

and takes the form (−1)FLΩσ. Here σ is a holomorphic and isometric involution of an

internal Calabi-Yau threefold X. This involution splits the cohomology groups Hp(X) and

homology groups Hq(X) into positive and negative eigenspaces Hp
±(X) and H±

q (X). In

particular, this split can be used to decompose the triple intersection form for divisors of

X. Due to the invariance of the volume form one finds that three elements in D−
i ∈ H−

4 (X)

as well as two elements of D+
i ∈ H+

4 (X) and one of H−
4 (X) do not intersect [34]

D−
1 D−

2 D−
3 = 0 D−

1 D+
2 D+

3 = 0. (2.1)

In order to cancel tadpoles, the orientifold model has to include a set of D7-branes

which fill (four-dimensional) space-time and wrap holomorphic four-cycles Da of the Calabi-

Yau manifold. The orientifold symmetry σ maps Da to its orientifold image D′
a so that

in the upstairs geometry each brane is accompanied by its image brane. Denoting by [Da]

the homology class of the divisor Da, we distinguish the three cases

• [Da] 6= [D′
a],

• [Da] = [D′
a] but Da 6= D′

a point-wise, and

• Da = D′
a point-wise (D7-branes coincide with an O-plane) .

In this article we are concerned with divisors of all three kinds and we would like to study

the fate of the D-branes once we lift the orientifold model to a Calabi-Yau fourfold.

For stacks of D7-branes not invariant under the orientifold action the Chan-Paton

gauge symmetry is U(Na), i.e. it includes in particular the diagonal U(1)a ⊂ U(Na). Each

such stack of D7-branes can carry non-vanishing background flux for the Yang-Mills field
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strength Fa supported on some two-cycles of Da. All physical quantities depend only on

the gauge invariant combination Fa = Fa + ι∗B1 which involves the pullback of the B-field

to the brane divisor. Only with non-vanishing gauge fluxes can one realize chiral spectra.

In fact, the chiral index is simply given by

Iab = −
∫

X

[Da] ∧ [Db] ∧
(

c1(La) − c1(Lb)
)

(2.2)

in terms of the gauge flux c1(La) = 1
2π
Fa. Note that in general this chiral matter is localised

on the intersection of two divisors Da∩Db, which defines a curve in X. The chiral spectrum

can be further enhanced by vector-like pairs, which are detected by computing the relevant

cohomology groups (for details we refer to the literature [30]).

In a global set-up the total charges of the orientifold planes and the D7-branes have

to be cancelled. This includes the D7-brane tadpole cancellation condition

∑

a

Na ([Da] + [D′
a]) = 8 [DO7], (2.3)

where the sum is over all D7a-branes.

The general condition for cancellation of the D3-brane tadpole is the most involved

one and takes the form

ND3 +
Nflux

2
− 1

2

∑

a

1

8π2

∫

Da

trF2
a =

NO3

4
+

χ(DO7)

12
+
∑

a

Na
χo(Da)

48
, (2.4)

where the sum is understood over all branes Da and their image. Here ND3 counts the

number of D3-branes and Nflux denotes the possible contributions from G3 = F3 + τ H3

form flux. The third term is due to the gauge flux background in the U(Na). The three

contributions on the right hand side of (2.4) are related to the O3-planes and the curvature

induced terms on the O7 and D7-branes.

The induced D3-charge on a smooth O7-plane is given by

χ(DO7) =

∫

X

(

[DO7]
3 + c2(TX) ∧ [DO7]

)

. (2.5)

The contribution from the D7-branes is more involved as in Sen’s orientifold limit [33],

since the D7-branes always intersect the O7-planes in double points [35, 36]. Therefore,

the Euler characteristic is a priori not well defined. However, via the relation to F-theory

it was argued in [36] that the correct Euler characteristic is

χo(D) =

∫

X

(

[D]3 + c2(X) [D] + 3 [D] [DO7] ([DO7] − [D])
)

. (2.6)

The right-hand side of (2.4) is precisely χ(Y )/24 in the F-theory lift of this Type IIB orien-

tifold, where Y denotes the elliptically fibered Calabi-Yau fourfold. However, it is important

to point out that in F-theory the fourfolds which yield non-Abelian gauge symmetries are

not smooth. To nevertheless compute the right-hand side of (2.4) in the F-theory up-lift

one has to resolve the singularities and determine the Euler characteristic of the smooth

blow-up space.
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3 Orientifold geometries

In [30, 37] various compact Calabi-Yau geometries were considered which satisfy the two

main conditions for realizing an SU(5) GUT model:

• the Calabi-Yau X contains shrinkable del Pezzo surfaces D

• there exist two-cycles on D which are non-trivial in D but trivial in X.

As prototype examples and for concreteness, let us present two such simple geometries

with their involutions.

Single del Pezzo transition of the quintic. The starting point is the familiar quintic

P
4[5], defined by a degree five hypersurface constraint in P

4 with homogeneous coordinates

xi, i = 1, . . . 5. At generic points in the complex structure moduli space the quintic P
4[5]

defines a smooth manifold. Choosing however the quintic polynomial as

x2
5 P3(x1, x2, x3, x4) + x5P4(x1, x2, x3, x4) + P5(x1, x2, x3, x4) = 0, (3.1)

with all monomials with factors xk
5 , k > 2 vanishing, it degenerates such that at

(x1, x2, x3, x4, x5) = (0, 0, 0, 0, 1) a del Pezzo singularity of the form dP6 = P
3[3] is gener-

ated. From this singular locus one can deform to a new Calabi-Yau manifold, where this

del Pezzo singularity is blown up to finite size and defines a new divisor of the Calabi-Yau

manifold. These transitions can be described via toric geometry and amount to introduc-

ing a new coordinate x6 and a second projective equivalence.1 The new degrees of the

coordinates are shown below:

vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2

v1 = (−1, −1, −1, −1 ) u1 1 0 H

v2 = ( 1, 0, 0, 0 ) u2 1 0 H

v3 = ( 0, 1, 0, 0 ) u3 1 0 H

v4 = ( 0, 0, 1, 0 ) u4 1 0 H

v5 = ( 0, 0, 0, 1 ) v 1 1 H + X

v6 = ( 0, 0, 0, −1 ) w 0 1 X

conditions: 5 2

In the following, the divisor {x = 0} is denoted as Dx. In this construction the divisors

are first defined in the toric ambient space determined by the polyhedron. The Calabi-Yau

hypersurface is then obtained as a representative of the anti-canonical class

K̄ =
6
∑

i=1

Dxi
(3.2)

1See refs. [30, 37] for more details on these constructions.
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of the toric ambient space. The toric divisors Dx restrict to divisors of the hypersurface such

that one can determine the triple intersections of this Calabi-Yau manifold by analyzing the

intersections in the toric ambient space. By abuse of notation we will denote the divisors

restricted to the hypersurface also by Dx. Introducing the basis H = Du1
and X = Dw

they read

H3 = 2, H2X = 3, HX2 = −3, X3 = 3. (3.3)

Note that these intersections become diagonal in the basis X, H̃ = H + X since

H̃3 = 5, X3 = 3. (3.4)

reflecting the so-called swiss cheese property of this threefold. Using these intersections we

can compute the Euler characteristics of the various divisors via (2.5). For instance for Dw

we consistently find χ(Dw) = 9. Note that this dP6 divisor has seven non-trivial two-cycles,

of which only one is non-trivial in the homology of the ambient Calabi-Yau threefold.

Next, one has to specify a holomorphic involution. Let us consider here the one acting

as σ : v → −v, which means that only even powers of this coordinate should appear in the

constraint. Due to the two projective equivalences in the above table, the fixed point locus

of this involution consists of the two disjoint smooth divisors

O7 = Dv + Dw (3.5)

and no fixed points. The divisor Dw is of course the dP6 surface, while the divisor Dv is

smooth, non-rigid and has χ(Dv) = 55.

Let us determine the D7-tadpole canceling brane configuration with minimal gauge

group. Naively, one might think that a single D7-brane wrapping a hypersurface in

[8H + 16X] might do the job. In this case, one would expect that the F-theory four-

fold would only have I1 singularities and the Weierstrass model is smooth, i.e. the basis

a Fano threefold. The D3-brane tadpole would then determine the Euler characteristic of

the smooth fourfold via

χ∗(Y ) =

(

χo(8Dv) + χo(8Dw)

2
+ 2χ(O7)

)

= 1728. (3.6)

However, in our case Dw is rigid and as a consequence the best we can do is to cancel the

induced O7-plane tadpole by a single brane along the divisor 8Dv and a stack of 8 D7-

branes along the divisor Dw. The resulting gauge symmetry2 is SO(8) and for the Euler

characteristic of the true uplifted fourfold Y we find

χ(Y ) =

(

χo(8Dv) + 8χo(Dw)

2
+ 2χ(O7)

)

= 1224. (3.7)

Since the IIB model gives rise to a non-trivial non-Abelian gauge symmetry, the uplifted

fourfold is expected to be generically singular over the del Pezzo surface Dw. These singu-

larities need to be resolved to compute the correct value of χ(Y ). In the singular case the

value χ∗(Y ) is nevertheless of relevance. As we will make more precise below, χ∗(Y ) is the

Euler characteristic of the blown-up Y plus the corrections due to the blow-up divisors.

2Actually the gauge group is SO(8) × SO(1), where the second, trivial, factor is supported on the

divisor 8Dv.
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Double del Pezzo transition of the quintic. The second example is defined by one

more del Pezzo transition and has two intersecting dP7 surfaces. In this case the quintic

polynomial is restricted such that all monomials containing xk
4, k > 2 or xm

5 , m > 2 vanish.

The resulting quintic now has two non-generic dP7 = P1,1,1,2[4] singularities. Blowing

these up into del Pezzo surfaces one introduces two additional coordinates w1 and w2 and

two additional projective equivalences. The new scaling weights of the coordinates are

shown below.

vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2 Q3

v1 = (−1, −1, −1, −1 ) u1 1 0 0 H

v2 = ( 1, 0, 0, 0 ) u2 1 0 0 H

v3 = ( 0, 1, 0, 0 ) u3 1 0 0 H

v4 = ( 0, 0, 1, 0 ) v1 1 0 1 H + Y

v5 = ( 0, 0, 0, 1 ) v2 1 1 0 H + X

v6 = ( 0, 0, 0, −1 ) w1 0 1 0 X

v7 = ( 0, 0, −1, 0 ) w2 0 0 1 Y

conditions: 5 2 2

In the basis H = Du1
, X = Dw1

and Y = Dw2
the triple intersection numbers are

H3 = 0, H2X = 2, HX2 = −2, X3 = 2,

H2Y = 2, HY 2 = −2, Y 3 = 2, HXY = 1,

X2Y = −1, XY 2 = −1.

(3.8)

For the two dP7 divisors Dw1
and Dw2

we consistently find χ(Dwi
) = 10. Moreover, they

intersect each other over a curve C = P
1 of Euler characteristic

χ(C) = −X Y (X + Y ) = 2 . (3.9)

While there exist various holomorphic involutions, here we are interested in the one which

exchanges the two dP7 divisors:

σ :

{

v1 ↔ v2,

w1 ↔ w2.
(3.10)

This implies that one element D− = X − Y is in H−
4 (X), while the other combination

D+ = X + Y is in H+
4 (Y ). In fact, consistent with (2.1), one finds the intersections

D+H2 = 4 , HD2
+ = −2 , D3

+ = −2 ,

D+D2
− = 6 , HD2

− = −6 .
(3.11)

As we will show one finds the intersections of elements in H+
4 (X), the first line of (3.11),

in the base of the F-theory fourfold.
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Using the identifications Q2 and Q3 the fixed point locus of the involution (3.10) is

v1 w1 = v2 w2, (3.12)

which defines a surface in [H + X + Y ]. Note that this is not the most generic surface in

the homology class [H + X + Y ], as one could add a term w1 w2 p1(u). Indeed looking at

the common intersection of the O7-plane and the hypersurface constraint

2
∑

m,n=0

vm
1 w2−m

2 vn
2 w2−n

1 p5−m−n(u) = 0 (3.13)

one finds a genus g = 0 curve P
1 where in addition to (3.12) and (3.13) also wi = 0, and

secondly a genus g = 6 curve where also vi = 0.3 The P
1 curve is of course the same as the

curve C in eq. (3.9) contained in both dP7 divisors.

Now to cancel the tadpole one can introduce a single D7-brane wrapping a smooth

surface in [8(H + X + Y )]. Since the O7-plane is smooth we can compute the Euler

characteristic of the uplifted fourfold as

χ∗(Y ) =

(

χo

(

8 (H + X + Y )
)

2
+ 2χ(H + X + Y )

)

= 1008, (3.14)

where we used χ(O7) = 56. Note that the fourfold Y is truly singular. It is beyond the

main scope of the present paper to compute these singular Euler characteristics. Note that

in contrast to the first model, here in the uplifted fourfold we expect to find a generic

singularity not over a divisor but only over a P
1 curve.

4 F-theory uplifts

Now we want to uplift these two orientifolds to F-theory on Calabi-Yau fourfolds. Recall

that F-theory on an elliptically-fibered Calabi-Yau fourfold Y with base B is equivalent

to Type IIB string theory on B with a dilaton-axion τ = C0 + ie−φ varying over this

base. In fact, at each point in B the complex number τ can be identified with the complex

structure modulus of the elliptic fiber over this point. If Y is a Calabi-Yau manifold, the

fiber degenerates over in general intersecting divisors Di in B subject to the constraint

∑

i

δi Di = 12 c1(B). (4.1)

The δi denote the vanishing degree of the discriminant ∆ over the divisor Di as listed for

various enhancement types in appendix B. The relation (4.1) follows just from the fact that

the descriminant is a section of K−12
B . Hence, the powerful geometrical tools to analyze Y

allow to study string compactifications with strong coupling regimes.

To uplift the orientifold models we follow essentially the recipe of [32]. The idea is to

first construct the base manifold B and then to consider the Weierstrass fibration over this
3The authors would like to thank the referee for pointing out a mistake here in the original version of

the paper.
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space. The base is given by the quotient X/σ and can contain Z2 singularities related to

the presence of O3-planes in the orientifold model. For the fourfold to be smooth the base

of the fibration must be Fano, i.e. its anticanonical bundle K−1
B must be ample. A criterion

for this is that

− KB · C > 0 (4.2)

for every effective curve. Since we are expecting the two uplifted fourfolds to be singular,

the base manifolds will not be Fano.

Single del Pezzo transition. Recall that the involution was σ : v → −v, which led

to two disjoint components for the O7-locus, namely {v = 0} and {w = 0}. To describe

the quotient X/σ we are therefore looking for a map which is 2-to-1 away from the two

O7-planes and 1-to-1 on them. This map can readily be defined as

(u1, u2, u3, u4, v, w) 7→ (u1, u2, u3, u4, v
2, w2). (4.3)

Now we consider the right-hand side as new homogeneous coordinates and introduce ṽ = v2

and w̃ = w2. The toric data of the base threefold is shown below:

vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2

v1 = (−1, −1, −1, −2 ) u1 1 0 P

v2 = ( 1, 0, 0, 0 ) u2 1 0 P

v3 = ( 0, 1, 0, 0 ) u3 1 0 P

v4 = ( 0, 0, 1, 0 ) u4 1 0 P

v5 = ( 0, 0, 0, 1 ) ṽ 2 1 2P + X

v6 = ( 0, 0, 0, −1 ) w̃ 0 1 X

conditions: 5 1

Let us discuss the construction of the hypersurface which is the base B. To begin with, we

proceed as in the Calabi-Yau case and find the maximal triangulations of the ambient toric

space obtained from the polyhedron. However, we then do not consider the hypersurface

representing the anti-canonical class K̄ =
∑

i Di of the ambient toric space as in (3.2), but

rather the one corresponding to

K̄ − X − P. (4.4)

Note that this is not a Calabi-Yau manifold as c1(B) = P + X. The Stanley-Reisner ideal

of the ambient toric space is {u1u2u3u4 = 0} ∪ {ṽw̃ = 0} such that the resulting triple

intersection form on B reads

P 3 = 1, P 2X = 3, PX2 = −6, X3 = 12. (4.5)

This is readily compared to the intersection form (3.4) in the orientifold model if one takes

the basis X, P̃ = 2P + X where

P̃ 3 = 20, X3 = 12. (4.6)
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As expected the two O7-components do not intersect. For the Euler characteristics of the

base divisors we find

χ(P ) = 18, χ(2P + X) = 55, χ(X) = 9, (4.7)

which shows that the O7-planes do not change their topology.

The fourfold Y is now defined as the Weierstrass model over this base,

y2 = x3 + x z4 f(ui, ṽ, w̃) + z6 g(ui, ṽ, w̃), (4.8)

where z is the section of the fibration, i.e. the divisor Z = {z = 0} is the base B3. For the

hypersurface constraint (4.8) to be well defined f and g have to be sections of appropriate

line bundles, i.e. f ∈ H0(B;K−4
B ) and g ∈ H0(B;K−6

B ) with the canonical line bundle given

by KB = O(−P − X). Note that the total Calabi-Yau fourfold is a complete intersection

of two hypersurfaces. In fact, the base B is not of Fano type, as can be seen by checking

the criterion (4.2) for the effective curve C = Dw̃ ∩ Du1
,

− KB · X · P = −3. (4.9)

Since the fourfold is singular, we cannot directly compute χ(Y ). For such a compu-

tation one would first have to resolve the singularities to obtain a smooth Y . Recall that

only in the case of a smooth fourfold with only I1 singularities of the elliptic fibration does

one have [38, 39]

χ∗(Y ) = 12

∫

B

c1(B) c2(B) + 360

∫

B

c3
1(B) , (4.10)

where B is the base of the fibration. If we naively apply this equation to the non-Fano

base B just constructed, we find χ∗(Y ) = 1728. This was also the value (3.6) for the naive

cancellation of the tadpoles in the orientifold model. This can be understood as follows.

The correct Euler characteristic of the blown-up Y is χ∗(Y ) − δ, where δ is a correction

term which depends on the Chern classes of the divisors, curves and points over which the

fiber degenerates. For example, if the fiber only degenerates over a divisor D with gauge

group G the corrected Euler characteristic of the blowup space is given by [40]

χ(Y ) = χ∗(Y ) − rG cG (cG + 1)

∫

D

c1(D)2, (4.11)

where rG and cG are the rank and dual Coxeter number of G. This can be generalized

to more complicated degenerations in higher codimension [27, 40]. In our example, for an

SO(8) singularity along Dw̃ (and no additional non-abelian enhancement over any other

divisor on B), generically no such higher codimension degenerations occur, and the above

formula correctly reproduces χ(Y ) = 1224 as computed in the orientifold picture in (3.7).

Roughly speaking χ∗(Y ) can be understood as the leading contribution, which will then

receive corrections due to the singularities. On the one hand, in the orientifold picture this

correction cannot be switched off due to the rigidity of D7-branes on the del Pezzo surface.

On the other hand, in the F-theory fourfold there exist no complex structure deforma-

tions which allow one to remove the gauge enhancement while preserving the Weierstrass
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form. Clearly, this matches the fact that deformations of D7-branes are mapped to com-

plex structure deformations of the Calabi-Yau fourfold. Nevertheless, if we subtract these

corrections on both sides, the matching of the easily computable numbers χ∗(Y ) with base

B still provides a non-trivial check of the F-theory up-lift of orientifold models.

In section 5 we will discuss what kind of degenerations and gauge theory enhancements

can arise in this singular Weierstrass model and compare it to the orientifold expectation.

But first let us present the uplift of the exchange orientifold.

Double del Pezzo transition. For this orientifold we proceed in exactly an analogous

manner. The required map which is 1-to-1 on the orientifold locus v1 w1 = v2 w2 and 2-to-1

away from it is

(u1, u2, u3, v1, v2, w1, w2) 7→ (u1, u2, u3, v1 v2, w1w2, v1w1 + v2w2). (4.12)

Note that the right-hand side has one coordinate less than the left-hand side, which is

expected as the holomorphic involution identifies two coordinates. Similarly, we also expect

that one projective equivalence drops out. Indeed after introducing new homogeneous

coordinates v = v1v2, w = w1w2, h = v1w1 + v2w2, the base manifold is described by the

toric data below:

vertices of the coords GLSM charges divisor class

polyhedron / fan Q1 Q2

v1 = (−1, −1, −2, −1 ) u1 1 0 P

v2 = ( 1, 0, 0, 0 ) u2 1 0 P

v3 = ( 0, 1, 0, 0 ) u3 1 0 P

v4 = ( 0, 0, 1, 0 ) v 2 1 2P + X

v5 = ( 0, 0, 0, 1 ) h 1 1 P + X

v6 = ( 0, 0, −1, −1 ) w 0 1 X

conditions: 5 2

The resulting triple intersection form on B reads

P 2X = 2, PX2 = −1, X3 = −1, (4.13)

leading to

χ(P ) = 13, χ(2P + X) = 46, χ(X) = 10, χ(2P + 2X) = 56. (4.14)

Therefore, X can be identified as the invariant dP7 divisor D+ introduced before (3.11) and

2P + 2X as the divisor class of the orientifold plane. Indeed, as expected the triple inter-

sections (4.13) for the fourfold base and the first line in the orientifold intersections (3.11)

agree up to an overall factor 2.

The fourfold Y is again defined as the Weierstrass model over this base

y2 = x3 + x z4 f(ui, v, h,w) + z6 g(ui, v, h,w), (4.15)
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giving again a (singular) complete intersection of two hypersurfaces. As anticipated, the

base B is not of Fano type as can seen by computing for the effective curve C = Dw ∩ Dh

− KB · X · (P + X) = −1. (4.16)

Therefore a smooth Y to determine χ(Y ) has to be obtained by blowing up the singularities.

However, as above, we can employ (4.10) to compute the leading order Euler characteristic

χ∗(Y ) = 1008 which has to be corrected by the topological data of the blow-ups. Again

this matches with the naive computation for the orientifold side (3.14).

5 Consequences for F-theory GUTs

Since in the last two sections we have established the F-theory lift of certain orientifold mod-

els, we can now study and compare the possible gauge theory enhancements. In the Type

IIB orientifold construction these are given by the Chan-Paton factors for the D7-branes.

As is well known this gives only rise to adjoint, bifundamental, symmetric and antisym-

metric representations of U(N), SO(N) and SP(N). Clearly, this excludes all exceptional

gauge groups. On the F-theory side the gauge group is encoded in the degenerations of

the elliptic fiber over the base manifold. Since we have the explicit Weierstrass model

available, we can use the Tate algorithm to determine the possible types of degenerations.

In principle we could imagine classifying all possible gauge groups that arise in this way.

However, in this paper we will only be discussing certain interesting cases. Moreover, in

this article we do not consider any G4-form flux, which would be the uplift of gauge fluxes

on the D7-branes. One should however keep in mind that in a fully consistent model the

Freed-Witten anomaly forces us to have some fluxes non-vanishing.4

Tate algorithm. For completeness we present here a short explanation of how the Tate

algorithm is used to determine the degeneration of the elliptic curve [41]. Instead of the

reduced form (4.8), one uses the complete Tate form of the hypersurface constraint

y2 + x y z a1 + y z3 a3 = x3 + x2 z2 a2 + x z4 a4 + z6 a6, (5.1)

where the an are sections of K−n
B . In terms of the combinations

b2 = a2
1 + 4 a2, b4 = a1 a3 + 2a4, b6 = a2

3 + 4 a6 (5.2)

the functions f and g in the Weierstrass form are given by

f = − 1

48
(b2

2 − 24 b4), g = − 1

864
(−b3

2 + 36b2b4 − 216 b6). (5.3)

The discriminant can then be expressed as

∆F = −1

4
b2
2 (b2b6 − b2

4) − 8b3
4 − 27b2

6 + 9b2b4b6. (5.4)

4For examples of this phenomenon in the IIB limit see [30].
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As detailed in [41], the possible singularities of the fiber and the corresponding gauge

groups can be read off almost entirely from the vanishing order of the sections an and of

the discriminant on the location of the D7-branes. For convenience of the reader we have

collected the required data in appendix B. We recall from [41] that a vanishing degree d

of an in the table along divisor Dx = [x = 0] is to be interpreted in the sense that an can

be written as an,d xd.

To recover Sen’s orientifold limit [33] one rescales the bi as5

b2 = −12h, b4 = 2 ǫ η, b6 = −ǫ2

4
χ. (5.5)

The orientifold limit is defined by taking ǫ → 0 such that the string coupling becomes weak

away from h = 0. The leading order discriminant then takes the form

∆ǫ = −9ǫ2h2(η2 − hχ) (5.6)

plus corrections cubic or higher in ǫ. This is just the first term in the full F-theory dis-

criminant (5.4). The D7-branes and O7-planes are thus located at

O7: h = 0,

D7: η2 = hχ.
(5.7)

The Type IIB theory is defined on the Calabi-Yau threefold X which is a double cover of

the base B branched over h = 0. Note that (5.7) shows already that the defining equation

for a D7-brane configuration with a well-defined F-theory uplift is non-generic [35, 36].

Away from the limit ǫ → 0 the factorization of the discriminant into a perturbative

O7-plane and the perturbative D7-branes is generically lost. The F-theoretic description

takes into account the non-perturbative effects which smoothen out the singular orientifold

plane. For a single stack of D7-branes this does not mean that the gauge symmetry on the

D7-branes is automatically reduced to lower rank in the F-theory. Rather, as long as the

singularity type of the higher order terms in ǫ is worse in the sense of Tate’s algorithm,

the perturbative gauge group persists also in the full F-theory. More generally, unless ∆F

exhibits the same factorization properties as ∆ǫ the rank of the (product) gauge group can

be reduced along a non-perturbative Higgs branch.

5.1 Single del Pezzo transition

Let us now consider a couple of interesting degenerations of the elliptic fiber occurring in

the uplift of the first orientifold model.

Non-abelian gauge symmetry on the orientifold locus. We first consider the sublo-

cus in complex structure moduli space with a well-defined orientifold limit. Recall that

{b2 = a2
1 + 4 a2 = 0} defines the location of the O7-planes. Taking into account that

an ∈ H0
(

B;O(n(P + X) )
)

, the general form of a1 and a2 is

a1 = p1(u) w̃, a2 = c0 ṽ w̃ + p2(u) w̃2. (5.8)

5Equivalently, one can rescale a3 → ǫa3, a4 → ǫa4, a6 → ǫ2a6 and send ǫ → 0.
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Here pn(u) denotes a polynomial of degree n in u1, u2, u3 and c0 ∈ C a complex structure

modulus. Requiring that the F-theory really describes the uplift of the orientifold fixes some

of the complex structure moduli in (5.8) such that the O7-plane is located at ṽ w̃ = 0. This

translates into p2(u) = −1
4p2

1(u).

The simplest brane configuration in Type IIB occurs when we cancel the orientifold

charge locally by placing a stack of 8 branes on top of the divisor Dv and a stack of 8 branes

on top of Dw. Without any gauge flux the resulting gauge group is simply SO(8)× SO(8).

The expected Euler characteristic of the singular fourfold is

χ(Y ) =

(

8χo(H + X) + 8χo(X)

2
+ 2χ(O7)

)

= 384. (5.9)

Consistently, this number reduces considerably by introducing stacks of D7-branes. In

F-theory this effect must be captured by correctly defining χ(Y ) for the now singular

fourfolds [27, 39, 40].

For the special case of local orientifold charge cancellation the coupling constant gs

is a constant everywhere and can be taken as a free parameter. As a first consistency

check, the corresponding gauge group must also be reproduced from the F-theory point

of view. Indeed application of Tate’s algorithm with the help of appendix B identifies the

corresponding F-theory configuration with gauge group SO(8) × SO(8) as

a1 = 0, a2 = ṽ w̃, a3 = 0, a4 = c1(ṽ w̃)2, a6 = 0. (5.10)

Next we determine the possible maximal non-Abelian gauge symmetry in the orien-

tifold limit both from a IIB and from an F-theoretic point of view. In the orientifold model,

one can cancel the D7-brane tadpole by introducing a stack of eight D7-branes wrapping

the divisor Du1
= H and sixteen D7-branes wrapping the dP6 surface Dw = X. Without

any gauge flux, this yields gauge group SP(8)× SO(16). The expected Euler characteristic

of the singular fourfold is

χ(Y ) =

(

8χo(H) + 16χo(X)

2
+ 2χ(O7)

)

= 312. (5.11)

Since H and X intersect there exists also non-chiral matter on the intersection curve. The

question now is whether one can find this gauge group also in the F-theory lift, i.e. whether

one can arrange for the elliptic fiber to degenerate such as to produce an SP(8) singularity

over Du1
and an SO(16) over Dw̃. A priori it is not excluded that this gauge symmetry is

reduced once effects non-perturbative in gs are taken into account. The point is that for

configurations where the charge of the orientifold plane is not cancelled locally, gs cannot

be considered as constant or taken to be arbitrarily small everywhere. While in F-theory

the backreaction of the D-branes is fully taken into account, the orientifold approach treats

all branes in the probe approximation, and extra surprises might happen.

Instead one finds that it is still possible to achieve this maximal enhancement along

u1 = 0 and w̃ = 0 on the sublocus in complex structure moduli space where

a1 = p1(u) w̃, a2 = ṽ w̃ − 1

4

(

p1(u) w̃
)2

, a3 = 0,

a4 = c1 u4
1w̃

4, a6 = 0.
(5.12)
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On this locus the non-Abelian gauge group on Du1
is SP(8) and the gauge group on Dw̃

is SO(16).

On the other hand, non-perturbative effects still leave their imprint on the geometry.

To see this we compare the expressions (5.4) and (5.6) for the discriminant locus in Sen’s

limit and in the full F-theory,

∆ǫ = 16c2
1 u8

1 w̃10 ṽ2, ∆F = 16c2
1 u8

1 w̃10 (ṽ2 − 4c1u
4
1w̃

2). (5.13)

What happens is that once the genuinely F-theoretic higher corrections in ∆ are taken into

account, the component ṽ = 0 of the O-plane, whose charge is not cancelled locally, splits

into two objects ṽ = ±2
√

cu2
1w̃. This splitting of the O-plane into two non-perturbative

7-branes in F-theory is familiar from compactifications to eight [42] and six [33, 43] di-

mensions. We find it interesting to have an explicit laboratory to study this effect in

four-dimensional vacua.

As elaborated in section 3, we are expecting that there also exists a minimal non-

Abelian gauge symmetry on the dP6 surface. Indeed it is easy to see that the sections an

cannot avoid some overall factors in w̃, i.e.

an = w̃dn(. . .) with (d1, d2, d3, d4, d6) = (1, 1, 2, 2, 3) (5.14)

which according to the Tate algorithm gives a G2 singularity. In the Sen limit this excep-

tional gauge group gets exhanced to SO(8), as a6/ai → 0 for ǫ → 0 and i = 3, 4.6 Thus,

the F-theory minimal gauge group is smaller than the perturbative one.

Exceptional gauge groups. From eqs. (5.8) and (5.12) and table 5 it is clear that in

the orientifold uplift we can only get orthogonal gauge groups on the del Pezzo surface Dw.

However, by choosing the complex structure such that c0 = 0 in (5.8), we have a chance to

also find exceptional gauge groups. In this case b2 6= ṽw̃ and this does not correspond to

any orientifold model. Let us exemplify this with an E6 singularity over the dP6 surface.

This can be engineered by choosing

a1 = p(1,0) w̃, a2 = p(2,0) w̃2, a3 = p(3,1)w̃
2,

a4 = p(4,1) w̃3, a6 = p(6,1) w̃5,
(5.15)

with p(m,n) denoting a section of O(mP + nX) which is not just of the form p4(u)w̃. For

this choice one gets an E6 singularity, which is enhanced to E7 for p(3,1) = 0. On the

curve w̃ = p(3,1) = 0 we thus find matter fields in the fundamental 27 representation.

The singularity is further enhanced to E8 where in addition p(4,1) = 0. Therefore, on the

intersection locus

{w = p(3,1) = p(4,1) = 0} (5.16)

one finds the Yukawa couplings 273. The number of these points is X (3P +X) (4P +X) =

6. We conclude that on the uplifted orientifold base, it is possible to engineer exceptional

gauge symmetries by moving away from the orientifold locus in F-theory complex structure

moduli space.

6Note that due to the quadratic and, respectively, linear dependence of b6 on a3 and a6 we do not neglect

a6 in the (perturbative) discriminant but only in determining the maximal vanishing degrees of the ai in

the table in appendix B, which are now (1, 1, 2, 2, 4).
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Spinors of SO(10)

Having realized E6 it is then natural to ask whether one can also start with SO(10) on the

del Pezzo and find the spinor representation on some curve where the fiber is enhanced to

E6. The sections for realizing SO(10) on Dw are

a1 = p(1,0) w̃, a2 = p(2,1) w̃, a3 = p(3,1) w̃2,

a4 = p(4,1) w̃3, a6 = p(6,1) w̃5,
(5.17)

which is enhanced to E6 on the curve w = p(2,1) = 0. However, for our base we have

X(2P + X) = 0 so that the intersection is empty. This can be traced back to the fact

that the two orientifold planes in the Calabi-Yau do not intersect. We conclude that while

it is possible with the uplift of our first orientifold to get exceptional gauge symmetries,

spinors of SO(10) are still not possible. What one could do however, is to break the E6 to

SO(10) via additional U(1) fluxes. In this way, one would also get spinors of SO(10) and the

16 16 10 Yukawa coupling but at the price of introducing potential exotic matter states.

5.2 Double del Pezzo transition

Let us now consider the uplift of the second orientifold defined via the double dP7 transition

with the exchange orientifold projection. In this case a1 and a2 can have more terms

a1 = ch h + p1(u)w, a2 = c0 v w + ch2 h2 + q1(u)hw + p2(u)w2. (5.18)

For the orientifold uplift, we expect b2 to be given by

b2 = η(h2 − 4v w), (5.19)

where η 6= 0 is some unknown constant. This restricts a2 to take the form

a2 = −η v w +
η − ch2

4
h2 − ch

2
p1(u)hw − 1

4
p2
1(u)w2. (5.20)

Recall from our discussion around eq. (3.13) that in this case, we are not expecting a

generic degeneration of the Weierstrass fibration over a surface but only over a rigid curve

P
1. A closer look reveals that generically the sections an cannot avoid some overall factors

in g = w = h, i.e.

an = gdn(. . .) with (d1, d2, d3, d4, d6) = (1, 1, 2, 2, 3), (5.21)

which gives a G2 singularity over the genus zero curve Dw ∩ Dh.

On the complex structure locus ch = η 6= 0 along the dP7 divisor Dw = X, SU(N)

degenerations are possible. This agrees with our expectations from the orientifold, as

in the upstairs Calabi-Yau threefold the two dP7s get exchanged and thus carry unitary

Chan-Paton labels. The maximal gauge group in Type IIB theory is now SP(8) × SU(8),

corresponding to the D7-tadpole canceling configuration of 8 branes on, say, Du1
and Dw1

(plus their image on Dw2
). This configuration is easily matched in F-theory for

a1 = chh + p1(u)w, a2 = −ch v w − ch

2
p1(u)hw − 1

4
p2
1(u)w2, a3 = 0,

a4 = cd u4
1w

4, a6 = 0.
(5.22)
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A similar splitting of the O7-plane is observed as for the previous model.

Let us study possible GUT enhancements off the orientifold locus. By choosing ch =

ch2 = 0 in (5.18), we can also arrange for an orthogonal gauge group along Dw. For

sections ai as in (5.17) one finds an SO(10) singularity with the potential spinors supported

on w = p(2,1) = 0. However, for the second base X(2P + X) 6= 0 but instead defines a

genus g = 1 curve on dP7. The Higgs fields in the 10 representation are localized on

the genus g = 4 curve w = p(3,1) = 0 and the 16 16 10 Yukawa coupling on the points

w = p(2,1) = p(3,1) = 0. There are X(2P + X)(3P + X) = 6 such points.

Therefore, for the exchange involution, after moving away from the orientifold lo-

cus, we can get SO(10) GUTs with spinor and vector representations and the 16 16 10

Yukawa couplings.7

Yukawas 10 10 5H of SU(5). We conclude by studying whether for the second fourfold

one can also find SU(5) GUTs with 10 and 5 representation and in particular the per-

turbatively absent 10 105H Yukawa couplings. From the Tate algorithm, the sections for

realizing SU(5) on Dw are

a1 = p(1,1), a2 = p(2,1) w, a3 = p(3,1) w2,

a4 = p(4,1) w3, a6 = p(6,1) w5.
(5.23)

This gets enhanced to SO(10) along the genus g = 0 curve

SO(10) : {w = p(1,1) = 0} (5.24)

supporting matter in the 10 representation. In addition one finds matter in the 5 repre-

sentation on the curve of SU(6) enhancement

SU(6) : {w = p2
(3,1)p(2,1) − p(4,1)p(3,1)p(1,1) + p(6,1)p

2
(1,1) = 0} (5.25)

as follows from an explicit analysis of the discriminant. Extra enhancement to SO(12)

occurs for {w = p(1,1) = p(3,1) = 0}. At this X(P + X)(3P + X) = 1 point the bottom-

quark Yukawa couplings 105 5H are localized. The 10 10 5H Yukawa couplings would

be localized at the further E6 enhancement {w = p(1,1) = p(2,1) = 0}. However, on our

second base X(P + X)(2P + X) = 0 so that this F-theory model fails to support the

top-quark Yukawas.

6 Conclusions

In this note we have found the F-theory uplift of Calabi-Yau threefolds which contain

shrinkable del Pezzo surfaces with non-trivial relative homology. Such geometries had been

used in [30] to implement phenomenologically appealing SU(5) GUT models into Type IIB

7This seems to be in contrast to the statement made in [28] that for uplifted orientifold models the spinor

representation of SO(10) would be localized on a curve of Z2 singularities. However, there the assumption

was made that the threefold is of the form ξ2 = b2 with involution ξ → −ξ, which is not the case for our

examples.
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orientifold compactifications. Our method, inspired by [32], has been to first define a

base threefold as the orientifold quotient of the Calabi-Yau threefold and then to consider

a Weierstrass model thereof. The resulting Calabi-Yau fourfold can be described as a

complete intersection of a toric ambient sixfold. We have seen that orientifolds with stacks

of D7-branes on del Pezzo surfaces generically lead to singular fourfolds with a degenerate

Weierstrass fibration over a non-Fano base. These singularities have to be resolved in order

to compute the fourfold Euler characteristic and match the geometric D3-brane tadpole in

the orientifold models.

We have analyzed explicitly which special subloci of the complex structure moduli space

of these fourfolds correspond in Sen’s limit to a perturbative IIB compactification. With

the help of Tate’s algorithm we have engineered some possible gauge groups arising on the

degenerations of the fourfold both for models with an orientifold limit and for more general

configurations. As one of our main findings we have identified smooth deformations in the

F-theory complex structure moduli space which take a configuration with a perturbative IIB

limit to a setup with only non-perturbatively possible exceptional gauge groups or spinor

representations. As far as possible applications to GUT model building are concerned we

have realized an SO(10) GUT group with spinor representations and the necessary structure

for Yukawa couplings. The top Yukawa couplings for a GUT SU(5) could however not be

obtained from the specific uplifts we consider here. It will be interesting to see whether

more general complete intersection Calabi-Yau fourfolds can permit them.
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A More F-theory uplifts

In addition to the examples covered in sections 3 and 4, the outlined uplifting procedure

was applied to a number of further orientifold involutions and base geometries.

The data is read as follows: The left column contains the orientifold information, where

the ’base space’ refers to the upstairs geometry of the threefold X. The Euler characteristic

is found under ’topology’. Coordinates of the del Pezzo-transitions of the quintic (tables 1

and 2) are in accordance to the main text. For the conventions of the later examples of

elliptically-fibered threefolds over del Pezzo bases we refer to section 4 of [30]. The naming

scheme M
(dPi1

,...,dPin
)

n refers to the threefold with base dPn, where the divisors of the last n

coordinates are of type dPi1 , . . . , dPin in the respective order. Note that dP9 and dP10 are

not del Pezzo surfaces, but are likewise defined by blowing up P
2 at 9 or 10 distict points.
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orientifold data (3-fold) uplift data (4-fold)

base space: dP6-trans. of P
4[5] new coords: ṽ = v2

involution: v 7→ −v w̃ = w2

topology: χ(X) = −176 topology: χ(B) = −56

O7-planes: Dv (χ = 55) Dṽ (χ = 55)

Dw (χ = 9, dP6) Dw̃ (χ = 9, dP6)

prediction: χ∗(Y ) = 1728 computation: χ∗(Y ) = 1728

involution: x2 7→ −x2 new coords: x̃2 = (x2)
2

topology: χ(X) = −176 topology: χ(B) = −65

O7-planes: D2 (χ = 46) D2̃ (χ = 46)

prediction: χ∗(Y ) = 612 computation: χ∗(Y ) = 612

Table 1. Two different orientifold involutions for the single del Pezzo transition of the quintic P4[5],

which contains a dP6 divisor. The first involution v 7→ −v is covered in detail in the main text.

orientifold data (3-fold) uplift data (4-fold)

new coords: ṽ = v1v2

base space: (dP7)
2-trans. of P

4[5] w̃ = w1w2

h̃ = v1w1 + v2w2

involution: v1 ↔ v2 topology: χ(B) = −48

w1 ↔ w2 Dṽ (χ = 46)

topology: χ(X) = −152 D
h̃

(χ = 24)

O7-planes: Dv1
+ Dw1

(χ = 56) Dw̃ (χ = 10, dP7)

prediction: χ∗(Y ) = 1008 computation: χ∗(Y ) = 1008

involution: u2 7→ −u2 new coords: ũ2 = (u2)
2

topology: χ(X) = −152 topology: χ(B) = −58

O7-planes: Du2
(χ = 36) Dũ2

(χ = 36)

prediction: χ∗(Y ) = 216 computation: χ∗(Y ) = 216

Table 2. Two different orientifold involutions for the double del Pezzo transition of the quintic

P4[5], which contains two dP7 divisors. The first involution (exchange of coordinates v1 ↔ v2,

w1 ↔ w2) is covered in detail in the main text.

In the right column the corresponding uplift data of the elliptically-fibered Calabi-Yau

fourfold is provided. The added divisor corresponds to the coordinate of weight 1 in the

P3,2,1[6] elliptic fiber and embeds the downstairs threefold base B into the fourfold. Under

’topology’ one finds the Euler characteristic of the downstairs base and the O7-planes

with respect to the new coordinates. Finally, we compute the Euler characteristic of the

fourfold, where we find perfect agreement to the predicted value from the threefold side

in each case. The symbol χ∗ for the fourfold Euler characteristic refers to the fact that Y

might be singular, refer to section 4 for a proper definition.
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orientifold data (3-fold) uplift data (4-fold)

base space: M
(dP8)
1

involution: x3 7→ −x3 new coords: x̃3 = (x3)
2

topology: χ(X) = −480 topology: χ(B) = −222

O7-planes: D3 (χ = 36) D3̃ (χ = 36)

prediction: χ∗(Y ) = 216 computation: χ∗(Y ) = 216

base space: M
(dP9)
1

involution: x3 7→ −x3 new coords: x̃3 = (x3)
2

topology: χ(X) = −480 topology: χ(B) = −222

O7-planes: D3 (χ = 36) D3̃ (χ = 36)

prediction: χ∗(Y ) = 216 computation: χ∗(Y ) = 216

Table 3. There are two different Calabi-Yau phases for the dP1 surface, i.e. the blowup of P2 at

a single point. Accordingly, one finds two phases for an elliptically-fibered threefold over dP1 base

and the respective fourfold uplift. The involution x3 7→ −x3 corresponds to an inversion of a dP1

base coordinate, see [30].
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orientifold data (3-fold) uplift data (4-fold)

base space: M
(dP8)2

2 new coords: x̃3 = (x3)
2

involution: x3 7→ −x3 x̃7 = (x7)
2

topology: χ(X) = −420 topology: χ(B) = −192

O7-planes: D3 (χ = 25,K3∗) D3̃ (χ = 25, K3∗)

D7 (χ = 11, dP8) D7̃ (χ = 11, dP8)

prediction: χ∗(Y ) = 216 computation: χ∗(Y ) = 216

base space: M
(dP8,dP9)
2 new coords: x̃3 = (x3)

2

involution: x3 7→ −x3 x̃7 = (x7)
2

topology: χ(X) = −420 topology: χ(B) = −385
2 = −192 − 1

2

O7-planes: D3 (χ = 24,K3) D3̃ (χ = 24, K3)

D7 (χ = 11, dP8) D7̃ (χ = 11, dP8)

prediction: χ∗(Y ) = 378 computation: χ∗(Y ) = 378

base space: M
(dP9,dP8)
2 new coords: x̃3 = (x3)

2

involution: x3 7→ −x3 x̃7 = (x7)
2

topology: χ(X) = −420 topology: χ(B) = −383
2 = −192 + 1

2

O7-planes: D3 (χ = 25,K3∗) D3̃ (χ = 25, K3∗)

D7 (χ = 12, dP9) D7̃ (χ = 12, dP9)

prediction: χ∗(Y ) = 54 computation: χ∗(Y ) = 54

base space: M
(dP9)2

2 new coords: x̃3 = (x3)
2

involution: x3 7→ −x3 x̃7 = (x7)
2

topology: χ(X) = −420 topology: χ(B) = −192

O7-planes: D3 (χ = 24,K3) D3̃ (χ = 24, K3)

D7 (χ = 12, dP9) D7̃ (χ = 12, dP9)

prediction: χ∗(Y ) = 216 computation: χ∗(Y ) = 216

base space: M
(dP10)2

2 new coords: x̃3 = (x3)
2

involution: x3 7→ −x3 x̃7 = (x7)
2

topology: χ(X) = −420 topology: χ(B) = −383
2 = −192 + 1

2

O7-planes: D3 (χ = 24,K3) D3̃ (χ = 24, K3)

D7 (χ = 13, dP10) D7̃ (χ = 13, dP10)

prediction: χ∗(Y ) = 54 computation: χ∗(Y ) = 54

Table 4. There are five different Calabi-Yau phases for the dP2 surface. Accordingly, one finds

five phases for an elliptically-fibered threefold over dP2 base and the respective fourfold uplift.

The involution x3 7→ −x3 corresponds to an inversion of a dP2 base coordinate, see [30]. The

half-integer Euler characteristics are related to the presence of an odd number of O3-planes in the

respective cases.
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B Tate algorithm

sing. discr. gauge enhancement coefficient vanishing degrees

type deg(∆) type group a1 a2 a3 a4 a6

I0 0 — 0 0 0 0 0

I1 1 — 0 0 1 1 1

I2 2 A1 SU(2) 0 0 1 1 2

I ns
3 3 [unconv.] 0 0 2 2 3

I s
3 3 [unconv.] 0 1 1 2 3

I ns
2k 2k C2k SP(2k) 0 0 k k 2k

I s
2k 2k A2k−1 SU(2k) 0 1 k k 2k

I ns
2k+1 2k + 1 [unconv.] 0 0 k + 1 k + 1 2k + 1

I s
2k+1 2k + 1 A2k SU(2k + 1) 0 1 k k + 1 2k + 1

II 2 — 1 1 1 1 1

III 3 A1 SU(2) 1 1 1 1 2

IV ns 4 [unconv.] 1 1 1 2 2

IV s 4 A2 SU(3) 1 1 1 2 3

I∗ns
0 6 G2 G2 1 1 2 2 3

I∗ ss
0 6 B3 SO(7) 1 1 2 2 4

I∗ s
0 6 D4 SO(8) 1 1 2 2 4

I∗ns
1 7 B4 SO(9) 1 1 2 3 4

I∗ s
1 7 D5 SO(10) 1 1 2 3 5

I∗ns
2 8 B5 SO(11) 1 1 3 3 5

I∗ s
2 8 D6 SO(12) 1 1 3 3 5

I∗ns
2k−3 2k + 3 B2k SO(4k + 1) 1 1 k k + 1 2k

I∗ s
2k−3 2k + 3 D2k+1 SO(4k + 2) 1 1 k k + 1 2k + 1

I∗ns
2k−2 2k + 4 B2k+1 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1

I∗ s
2k−2 2k + 4 D2k+2 SO(4k + 4) 1 1 k + 1 k + 1 2k + 1

IV∗ns 8 F4 F4 1 2 2 3 4

IV∗ s 8 E6 E6 1 2 2 3 5

III∗ 9 E7 E7 1 2 3 3 5

II∗ 10 E8 E8 1 2 3 4 5

non-min 12 — 1 2 3 4 6

Table 5. Refined Kodaira classification resulting from Tate’s algorithm. In order to distinguish the

“semi-split” case I∗ ss

2k
from the “split” case I∗ s

2k
one has to work out a further factorization condition

which is part of the aforementioned algorithm, see §3.1 of [41].
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[5] R. Blumenhagen, B. Körs, D. Lüst and T. Ott, The standard model from stable intersecting

brane world orbifolds, Nucl. Phys. B 616 (2001) 3 [hep-th/0107138] [SPIRES].

[6] R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].

[7] C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I,

JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

[8] C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II:

experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

[9] R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].

[10] M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at

singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007]

[SPIRES].

[11] J.J. Heckman, J. Marsano, N. Saulina, S. Schäfer-Nameki and C. Vafa, Instantons and SUSY
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